Legendrian Knots and Links Classified by Classical Invariants
نویسنده
چکیده
It is shown that Legendrian (resp. transverse) cable links in S with its standard tight contact structure, i.e. links consisting of an unknot and a cable of that unknot, are classified by their oriented link type and the classical invariants (Thurston-Bennequin invariant and rotation number in the Legendrian case, self-linking number in the transverse case). The analogous result is proved for torus knots in the 1–jet space J(S) with its standard tight contact structure.
منابع مشابه
Classification of Legendrian Knots and Links
The aim of this paper is to use computer program to generate and classify Legendrian knots and links. Modifying the algorithm in [11], we write a program in Java to generate all grid diagrams of up to size 10. Since classification of Legendrian links up to Legendrian isotopy is equivalent to grid diagrams modulo a set of Cromwell moves including translation, commutation and X:NE,X:SW (de)stabil...
متن کاملPolynomial Invariants of Legendrian Links and Plane Fronts
We show that the framed versions of the Kauuman and HOMFLY poly-nomials of a Legendrian link in the standard contact 3-space and solid torus are genuine polynomials in the framing variable. This proves a series of conjectures of 5] and provides estimates for the Bennequin{Tabachnikov numbers of such links. In a series of recent papers 1{3], V. I. Arnold revived interest in the study of plane cu...
متن کاملNew Invariants of Legendrian Knots
We discuss two different ways to construct new invariants of Legendrian knots in the standard contact R. These invariants are defined combinatorially, in terms of certain planar projections, and (sometimes) allow to distinguish Legendrian knots which are not Legendrian isotopic but have the same classical invariants.
متن کاملClassical invariants of Legendrian knots in the 3-dimensional torus
All knots in R3 possess Seifert surfaces, and so the classical Thurston-Bennequin invariant for Legendrian knots in a contact structure on R 3 can be defined. The definitions extend easily to null-homologous knots in a 3-manifold M endowed with a contact structure ξ. We generalize the definition of Seifert surfaces and use them to define the Thurston-Bennequin invariant for all Legendrian knots...
متن کاملar X iv : 0 90 1 . 03 80 v 2 [ m at h . SG ] 6 J ul 2 00 9 RATIONAL LINKING AND CONTACT GEOMETRY
In the note we study Legendrian and transverse knots in rationally null-homologous knot types. In particular we generalize the standard definitions of self-linking number, ThurstonBennequin invariant and rotation number. We then prove a version of Bennequin’s inequality for these knots and classify precisely when the Bennequin bound is sharp for fibered knot types. Finally we study rational unk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008